Sr 原子自电离谱线的观察和分析*

胡素芬 张 森 陆 杰 邱济真 孙家祯 (浙江大学物理系)

提 要

本文报道了用编振光束分步激发的方法,对 Sr 原子($5P_{1,2}ns$)_{J=1}及($5P_{1,2}nd$)_{J=1,3} 自电离谱的观察, 测定了 Sr 的($5P_{1,2}ns$)_{J=1}系列($n=10 \sim 26$)的自电离能级位置和量子亏损,并对($5P_{1/2}ns$)_{J=1}及($5P_{1,2}nd$)_{J=1,3}两种自电离谱线的不同特点进行了分析。

一、引 言

近年来对原子自电离态的研究成为人们相当感兴趣的课题。对碱土金属原子的自电离态的能级位置和线宽^[1,2]、线型^{[3~55}、精细结构^[6,7]、自电离能级系列之间相互作用^[8]等方面已有一些系统的研究。在文献[2]中,我们采用了分步激发的方法,已对 Sr 原子 5 $P_{1/2}$ ns 系列自电离谱作了观察,测定了 Sr 的 5 $P_{1/2}$ ns 系列($n=10\sim17$)的能级位置。但在该实验中,没有使用偏振光技术,终态 5 $P_{1/2}$ ns 的总角动量 J 是不确定的,得到的 5 $P_{1/2}$ ns 自电离态能级 是(5 $P_{1/2}$ ns) J=0, 1 的混合态能级。本文报道了最近我们用三束同方向的线偏振激光分步激发,对 Sr(5 $P_{1/2}$ ns) J=1 及 (5 $P_{1/2}$ nd) J=1,2 的现象。并对所获得的不同自电离谱线特征进行了分析。

二、实验和结果

详细的实验装置已在文献[2]中描述,与文献[2]不同的是:三束染料激光经线偏振器 使之为同方向的线偏振光,使最后的自电离态为(5P_{1/2}ns)_{J=1},分步激发的过程可用下式 表示:

$$5s^{2} {}^{1}S_{0} \xrightarrow{\lambda_{2} = 4600 \text{ Å}} 5s5p {}^{1}P_{1} \xrightarrow{\lambda_{2}} 5sns {}^{1}S_{0} \xrightarrow{\lambda_{3}} (5P_{1'3}ns)_{J=1}, \tag{1}$$

为了避免离子收集电场引起的 Stark 位移,两平行板电极之间的电压由一脉冲电压源提供, 电压脉冲由光信号触发,在光脉冲结束后延迟 0.5μs,产生一脉宽 40 ms,幅度 40 V 的脉冲 电压,使离子进入电子倍增器。电离信号经 Boxcar 平均后,由 X-Y 记录仪描绘出原子自 电离态的激发谱。

实验观察和测量了 $Sr(5P_{1/2}ns)_{J=1}(n=10\sim26)$ 的自电离谱。由于 $n \ge 17$ 时, 5sns ${}^{1}S_{0}$ 能级与5s(n-1)d ${}^{1}D_{2}$ 能级十分接近,而我们的染料激光的线宽 ~1 cm⁻¹, 当调谐第二束激

收稿日期: 1985年12月3日; 收到修改稿日期: 1986年3月7日

[▶] 中国科学院科学基金实质的课题。

10 期

光波长 λ_2 , 实现 5s5p ¹ $P_1 \rightarrow 5$ sns ¹ S_0 激发时, 也能使 5s(n-1)d ¹ D_2 态布居, 这样当 λ_2 在 Sr⁺ 5s-5 $P_{1/2}$ 共振线附近扫描时, 也能实现 5s(n-1)d ¹ $D_2 \rightarrow (5P_{1/2}(n-1)d)_{J=1,3}$ 的激发。所以 实验中还观察到 (5 $P_{1/2}nd$)_{J=1,3}($n=17\sim 25$)的自电离谱。

图 1 是第三束激光功率较低时,由 X-Y 记录仪记录的 $5s16s {}^{1}S_{0} \rightarrow (5P_{1/2}16s)_{J=1}$ 的激发 谱。 图中用 s 表示出($5P_{1/2}16s$)_{J=1}的自电离峰位置。在 23663.7 cm^{-1} 及 23734.8 cm^{-1} 处 出现的窄的尖峰,分别对应于下列过程的跃迁:

$$5s5p \,{}^{1}P_{1} \xrightarrow{\lambda_{2} = 4213.2 \,\text{\AA}} 5s17d \,{}^{1}D_{2} \xrightarrow{\lambda_{3} = 4213.2 \,\text{\AA}} (5P_{1/2}17d)_{J=1,3} \rightarrow \text{Sr}^{+} + e^{-}, \qquad (2)$$

$$5s5p \,{}^{1}P_{1} \xrightarrow{\lambda_{3}=4220.9\,\text{A}} 5s16d \,{}^{1}D_{2} \xrightarrow{\lambda_{5}=4220.9\,\text{A}} (5P_{1/2}15d)_{J=1,3} \rightarrow \text{Sr}^{+} + e^{-}, \tag{3}$$

实验中作为 λ_s 波长的定标⁽²³⁾。由图 1 可见,这时谱线的特点是只见到一个强的自电离峰,谱 线的线型呈 Lorentz 型,自电离峰的中心位置 S 靠近 Sr⁺5s-5P_{1/2} 共振线(23715.3 cm⁻)。

Fig. 1 Excitation spectrum of $5s16s {}^{1}S_{0} \rightarrow (5P_{1/2}16s)_{J=1}$ transition of Sr with a low laser power

Fig. 2 Excitation spectrum around $5s23d {}^{1}D_{2} \rightarrow (5P_{M2}nd)_{J \sim 1,2}$ transition of Sr with a low laser power

图 2 是第三束激光功率较低时,由 X-Y 记录仪所记录的 $5s23d {}^{1}D_{2} \rightarrow (5P_{1/2}nd)_{J=1,3}$ 的 跃迁。实验中,我们可分辨出 $(5P_{1/2}nd)J=1$ 和J=3的分裂。由图 2 可见,这时谱线的特 点是:见到两个强的自电离峰,它们分别对应于 n=23和 n=22的跃迁。两个强峰之间的 小峰对应于 $5s24s {}^{1}S_{0} \rightarrow (5P_{1/2}24s)_{J=1}$ 的激发。

图 3 和图 4 分别是激光功率较强时,由 X-Y 记录仪记录的 $5s16s {}^{1}S_{0} \rightarrow (5P_{1/2}ns)_{J=1}$ 和 $5s23d {}^{1}D_{2} \rightarrow (5P_{1/2}nd)_{J=1,3}$ 附近的激发谱。这时见到对应于图 1 和图 2 的中央大 峰有 倒 空 加宽^[4,9] 在大峰的两翼还见到若干个较小的伴峰,伴峰所对应的 n 值已在图中标出。

表1列出了实验测得的 Sr的($5P_{1/2}ns$)_{J=1}的能级位置 *B*,有效量子数 n^* ,量子亏损 δ 以 及使 $5sns {}^{1}S_{0} \rightarrow (5P_{1/2}ns)_{J=1}$ 跃迁的第三束激光的波长 λ_{s} 计算中 $5s5p {}^{1}P_{1}$ 能级取 $E(5s5p {}^{1}P_{1}) = 21698.48 \text{ cm}^{-1(10)}$,第一电离限的能量 $E(5s^{+}) = 45932.1 \text{ cm}^{-1}$, Sr⁺ 离子的 $5s-5P_{1/2}$ 拱振线能量 $4W = 23715.2 \text{ cm}^{-1(10)}$ 。表1中 n^* , δ 均为多次测量的平均值。由表1

Fig. 3 Excitation spectrum around $5s16s {}^{1}S_{0} \rightarrow (5P_{1/2}ns)_{J-1}$ transition of Sr with a high laser power

Fig. 4 Excitation spectrum around $5s23d \ ^1D_2 \rightarrow (5P_{1/2}nd)_{J-1,3}$ transition of Sr with a high laser power

Table 1	Measured	values	of E ,	λ3, n	*,δ	for th	e series	$(5P_{1/2}ns_{1/2})_{J=1}$	of	\mathbf{Sr}

autoionized state	$E(5P_{1/2}ns)_1$ (cm ⁻¹)	λ ₃ (Å)	n*	δ
$(5P_{1/2}10s)_1$	67126.1±0.8	4234.8 ± 0.1	6.597	3.403
$(5P_{1/2}11s)_1$	67736.8 ± 0.4	4230.1 ± 0.1	7.579	3.421
$(5P_{1/2}12s)_1$	68165.0 ± 0.7	4224.4±0.1	8.604	3.396
$(5P_{1/2}13s)_1$	68450.1 ± 0.6	4223.6 ± 0.1	9.574	3.426
$(5P_{1/2}14s)_1$	68669.7 ± 0.4	4221.2±0.1	10.593	3.407
$(5P_{1/2}15s)_1$	68829.3±0.7	4220.4 ± 0.1	11.582	3.418
$(5P_{1/2}16s)_1$	68956.7 ± 0.2	4219.1 ± 0.1	12.606	3.394
$(5P_{1/2}17s)_1$	69053.2±0.5	4218.9 ± 0.1	13.591	3.409
$(5P_{1/2}18s)_1$	69131.7 ± 0.9	4218.5 ± 0.2	14.588	3.412
$(5P_{1/2}19s)_1$	69195.9±0.8	4218.2±0.1	15.590	3.410
(5P1/2208)1	69249.8 ± 0.6	4217.7 ± 0.1	16.614	3.386
$(5P_{1/2}21s)_1$	69293.4±0.9	4217.6 ± 0.2	17.607	3.393
$(5P_{1/2}22s)_1$	69329.8 ± 0.8	4217.6 ± 0.1	18.589	3.411
$(5P_{1/2}23s)_1$	69362.0 ± 0.5	4217.3 ± 0.1	19.609	3.391
$(5P_{1/2}24s)_1$	69388.1 ± 0.6	4217.4 ± 0.1	20.573	3.427
$(5P_{1/2}25s)_1$	69411.6 ± 0.6	4217.3 ± 0.1	21.574	3.426
$(5P_{1/2}26s)_1$	69432.6 ± 0.4	4217.1±0. 2	22. 60 4	3.396

可见, $(5P_{1/2}ns)_{J=1}$ 的 δ 值近于常数,其平均值 $\delta = 3.407$ 过表明 $(5P_{1/2}ns)_{J=1}$ 自电离系列 在 $n = 10 \sim 26$ 范围较少受其它自电离系列的干扰。

表2列出了文献[2]的测量值按 Sr⁺ 的 5s 电离限 $I(5s) = 45932.1 \text{ cm}^{-1}$ 重新计算 所 得 的结果*。由表1和表2比较可以看出, n=10~14 几个态的 $(5P_{1/2}ns)_{J=2}$ 的能级位置比 J=0, 1 混合的 $(5P_{1/9}ns)$ 能级低,并且 n 越小偏低越明显。n>15 时,在误差范围内两次实 验得出的能级位置十分接近。 这表明在 n 较小时,可望测出 Sr 的 $(5P_{1/2}ns)$ J=0 和 J=1的精细结构分裂。

E (5P _{1.2} ns) (cm ⁻¹)	$\lambda_{3}(\mathrm{\AA})$	n*	δ
67131.3	4233.8	6.604	3.396
67738.6	4229.8	7.582	3.418
68165.8	4224.2	8.606	3,394
68451.8	4223.3	9.580	3.420
68671.2	4220.9	10.602	3.398
68828.8	4220.5	11.578	3,422
68957,3	4219.1	12.610	3.390
69053.9	4218.8	13.597	3.403
	$\begin{array}{c} E\left(5P_{1,2}ns\right)\\ (cm^{-1}) \end{array}$ 67131.3 67738.6 68165.8 68451.8 68671.2 68828.8 68957.3 69053.9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c } \hline E(5P_{1,2}ns) & & & & & & & & & & \\ \hline & & & & & & & &$

Table 2 Measured values for the series $(5P_{1/2}ns)$ of Sr in the Ref. [2] (modified)

三、谱线特征的分析

运用量子亏损理论和孤立实激发模型, S. A. Bhatti 和 W.E. Cooke^[0], N. H. Tran^[5, 12], R. Kachru^[7]等曾对 Ba 原子自电离谱线的特征进行了分析。

考虑 Sr 原子从 5snl ¹S₀ 态到(5P_{1/2}nl)系列(l=s 或 d)的激发,由分步激发方案可知,这 过程基本上是 Sr⁺5s-5P_{1/2} 的跃迁,而外边的里德堡电子可看作是一个"旁观者"。应用量子 亏损理论可得出这一过程的光激发截面 6 为:

$$6(n^*) \propto \mu^2 O^2(n_b^*, n^*) Z_l^2(n^*)^{[5,7]}$$
(4)

式中 μ 表示 $\langle 5s | \mu | 5P \rangle$,是 Sr⁺5s-5P 偶极跃迁矩阵元; $O(n_b^*, n^*)$ 表示 $\langle n_b^* l | n^* l \rangle$,是有效量子数为 n_b^* 的束缚里德堡 5snl 与有效量子数为 n^* 的自电离态 5 $P_{1/s}$ nl 的 l 电子的库仑径 向波函数的重叠积分,由文献[3]可知,

$$O^{2} = |\langle n_{b}^{*}l | n^{*}l \rangle|^{2} = \frac{4n_{b}^{*}n}{(n_{b}^{*} + n^{*})^{2}} \left(\frac{\sin \pi (n^{*} - n_{b}^{*})}{\pi (n^{*} - n_{b}^{*})}\right)^{2},$$
(5)

由 (5) 式可见, O^2 是一个 sin C 函数。 当 $n^* = n_i^*$ 时, O^2 有极大值; 当 $n^* = n_i^* \pm i \langle i \rangle$ 为除零以 外的正整数)时, O = 0; 当 $n^* = n_0^* \pm i + \frac{1}{2}$ 时, O^2 有次极大; Z_i^2 是自电离态 $5P_{1/2} nl$ 的谱密 度, 它是 n^* 的周期函数, 峰值在自电离态的有效量子数 $n^* = n - \delta$ 处(δ 为 $5P_{1/2} nl$ 态的量子 亏损)。(4)式中 μ^2 是一个常数,所以光激发截面正比于 O^2 和 Z_i^2 的乘积。

图 5 画出了由 5s16s 激发到 5P1/2 ns 系列的谱密度 2° 和重叠积分平方 02(12.733, n*)

^{*} 文献[2]中取 I[5s]=45925.6 cm⁻¹ 是来自文献[10]的数据。

的示意图, 横坐标表示有效量子数 n^* 。图中粗实线表示 O^2 , 细实线表示 Z_*^2 。对 $5s16s^{1}S_0$ 态 的 $n_b^*=12.733^{[11]}$, 由本实验得 $(5P_{1/2}16s)_{J=1}$ 的 $n^*=12.606$ 。由图 5 可清楚看出,由于 O^3 的主峰位置与 $(5P_{1/2}16s)$ 的 Z_*^2 峰值位置之差 $4n^*=n_b^*-n^*=0.1$ (即 $n^*\sim n_b^*$),这样由 O^2 和 Z_*^2 合成的结果,呈现在 $|n^*-n_b^*|<1$ 的范围内 $6(n^*)$ 只有一个极大值,这相当于在实跃迁线 附近只有一个极大的自电离峰被观察到。由图 5 还可看到,由 O^2 和 Z_*^2 合成的结果,在 $|n^*-n_b^*|>1$ 处,能见到较弱的伴峰,但由于 sin O 函数的特点以及 $5P_{1/2}ns$ 态的 Z_*^2 极大接 近 O^2 的极小,所以伴峰很弱,只有在高激光功率时才能看到。这些结论与实验观察(见图 1 及图 3)很好地符合。由于对 $Sr(5P_{1/2}ns)_{J=1}(n=10\sim 26)$ 系列有恒定的量子亏损($\delta=3.407$), $4n^*=n_b^*-n^*$ 均为 0.1 左右,所以观察到的 $(5P_{1/2}ns)_{J=1}$ 的自电离谱均有相似的特点。

Fig. 5 Schematic of the density Z_*^2 of $(5P_{1/2}ns)_{J=1}$ series near $5P_{1/2}16s$ and the overlap integral squared $O^2(12.733, n^*)$ from the $5s16s_5state n_b^*=12.733$, where Z_*^2 is shown by thin solid lines and O^2 is shown by thick solid lines

Fig. 6 Schematic of the density Z_d^2 of the $(5P_{1/2}nd)$ series near $5P_{1/2}23d$ and the overlap integral squared $O^2(20.721, n^*)$ from the $5s23d \ ^1D_2$ states $n_b^*=20.271$, where Z_d^2 is shown by thin solid lines and O^2 is shown by thick solid lines

图 6 是 5s23d ${}^{1}D_{2} \rightarrow (5P_{1/2}nd)_{J=1,3}$ 激发的谱密度 Z_{s}^{2} 和重叠积分平方 $O^{a}(20.721, n^{*})$ 的 示意图。[对 5s23d ${}^{1}D_{2}$ 态的 $n_{b}^{*}=20.721^{(11)}$, $(5P_{1/2}23d)_{J=1,3}$ 的 $n^{*}=21.111$]。由图 6 可清楚 地看出,由于这时 sin C 函数的主峰内有两个 Z_{s}^{a} 的极大值,这样 Z_{s}^{a} 与 O^{a} 合成的结果,将在 $|n^{*}-n_{b}^{*}| < 1$ 范围内见到 6(n^{*})有两个极大峰,这相当于在实跃迁线两边有两个大的自电离 峰。又因这时 $n^{*}-n_{b}^{*}=0.4$,所以应见到($5P_{1/2}23d$)峰比($5P_{1/2}22d$)峰稍高⁽¹²⁾。由图 6 还可 看出,在 $|n^{*}-n_{b}^{*}| > 1$ 范围,这时 Z_{s}^{a} 的各极大值几乎与 O^{a} 的各边极大值重合,这样合成的结 果,能较容易地见到若干个伴峰。但由于 sin C 函数的特点,这些伴峰似比主峰弱得多。这 些结论与实验观察(见图 2 和图 4)一致。由于($5P_{1/2}nd$)系列的量子亏损 δ 不是常数,使这 系列 Δn^{*} 是变化的,合成的 6(n^{*})线形也不尽相同。但因这时 Δn^{*} 均不为零,所以在 $|n^{*}-n_{b}^{*}|$ 《1 范围均可见到有两个极大的 6(n^{*})峰。实验观察的($5P_{1/2}nd$)系列($n=17\sim25$)的有效量 子数 n^{*} 与相应的里德堡态的有效量子数 n_{b}^{*} 之差 Δn^{*} 在 0.4~0.5 之间,所以见到的两个 极大峰均接近等高。当 $n \ge 17$, λ_{a} 在 Sr⁺5s-5 $P_{1/2}$ 共振线附近扫描而使($5P_{1/2ns}$)_{J=1}与 ($5P_{1/2nd}$)_{J=1,3} 谱同时激发时,我们可以根据以上分析的这两个系列谱线的不同特点来识别 它们。由于谱线线型随自电离态的谱密度以及自电离态与里德堡态的 l 电子的库仑径向波 函数的重叠积分的变化而灵敏地变化,使我们有可能由谱线的特征来了解自电离态的有关 结构,这也许可作为研究自电离态的有用的光谱学探针^[5]

感谢陈哲人教授和 W. E. Cooke 教授的指导;感谢吴璧如副教授的有益讨论和帮助。

参考文献

- [1] W. E. Cooke et al.; Phys. Bev. Lett., 1978, 40, No. 3 (Jan), 178.
- [2] 陆杰等; 《乾理学报》, 1985. 34, No. 12 (Dec), 1567。
- [3] S. A. Bhatti et al.; Phys. Rev. A, 1981, 24, No. 1 (Jul), 161.
- [4] W. E. Cooke et al.; Opt. Lett., 1982, 7, No. 2 (Feb), 69.
- [5] N. H. Tran et al.; Phys. Rev. A, 1982, 26, No. 5 (Nov), 3016.
- [6] W. E. Croke and T. F. Gallagher; Phys. Rev. Lett., 1978, 41, No. 24 (Dec), 1648.
- [7] R. Kachru et al.; Phys. Rev. A, 1985, 31, No. 2 (Feb), 700.
- [8] F. Gounand et al.; Phys. Rev. A, 1983, 27, No. 4 (Apr), 1925.
- [9] S. A. Bhatti and W. E. Coche; Phys. Rev. A, 1983, 28, No. 2 (Aug), 756.
- [10] C. E. Moore; «Atomic Energy Levels», (N. B. S., 1971), 190.
- [11] J. R. Rubbmark et al.; Phys. Scr., 1978, 18, 196.
- [12] N. H. Tran et al.; Phys. Rev. A, 1984, 29, No. 5 (May), 2640.

Observation and analysis of autoionizing spectra of Sr

HU SUFEN, ZHANG SEN, LU JIE, QIU JIZHEN AND SUN JIAZHEN

(Department of Physics, Zhefiang University, Hangzhou)

(Received 3 December 1985; revised 7 March 1986)

Abstract

We report the observation of $(5P_{1/2}ns)_{J=1}$ and $(5P_{1/2}nd)_{J=1,3}$ autoionizing spectra of Sr, by using the polarized multi-step laser excitation approach. The energy levels and quantum defects of Sr $(5P_{1/2}ns)_{J=1}$ series $(n=10\sim26)$ have been measured. Some characteristics of $(5P_{1/2}ns)_{J=1}$ and $(5P_{1/2}nd)_{J=1,3}$ autoionizing spectra of Sr have been analysed.